License Plate Detection & Car Pose Estimation

An Anchor-Free Object Detector with Contextual Information for License Plate Detection

License plate detection & Car pose estimation

For Python 2.7 View project on GitHub

References

[1] S. Du, M. Ibrahim, M. Shehata and W. Badawy, “Automatic License Plate Recognition (ALPR): a state-of-the-art review,” IEEE Transactions on Circuits and Systems for Video Technology 23(2), pp. 311-325, 2013.

[2] S. Silva and C. Jung, “License plate detection and recognition in unconstrained scenarios,” in The European Conference on Computer Vision (ECCV), 2018.

[3] S. Silva and C. Jung, “Real-time Brazilian license plate detection and recognition using deep convolutional neural networks,” in 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017.

[4] M. Everingham, L. Van~Gool, C. K. I. Williams, J. Winn and A. Zisserman, “The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2012 {(VOC2012)} {R}esults,” [Online]. Available: http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[5] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[6] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision (ICCV), 2015.

[7] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” in Conference on Neural Information Processing Systems (NIPS), 2015.

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu and A. Berg, “SSD: single shot multibox detector,” in The European Conference on Computer Vision (ECCV), 2016.

[9] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi and A. C. Berg, “Dssd: deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659, 2017.

[10] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan and C. L. Z. P. Dollár, “Microsoft COCO: Common Objects in Context,” in The European Conference on Computer Vision (ECCV), 2014.

[11] J. R. Uijlings, K. E. v. d. Sande, T. Gevers and A. W. Smeulders, “Selective search for object recognition,” International Journal of Computer Vision (IJCV), 2013.

[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, “OverFeat: integrated recognition, localization and detection using convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[13] J. Redmon and A. Farhadi, “YOLOv3: an incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Doll´ar, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (ICCV), 2017.

[15] H. Law and J. Deng, “CornerNet: detecting objects as paired keypoints,” in The European Conference on Computer Vision (ECCV), 2018.

[16] C. Zhu, Y. He and M. Savvides, “Feature selective anchor-free module for single-shot object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations (ICLR), 2015.

[18] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[19] A. Newell, K. Yang and J. Deng, “Stacked hourglass networks for human pose estimation,” in The European Conference on Computer Vision (ECCV), 2016.

[20] O. Ronneberger, P. Fischer and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, 2015.

[21] T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature pyramid networks for object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[22] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] S.-H. Kuo, J.-E. Ok and E.-Y. Cha, “Vehicle Front-Rear detection for license plate detection enhancement,” in 15th International Conference on Multimedia Information Technology and Applications(MITA), 2019.

[24] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: unified, real-time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang and Q. Tian, “Centernet: keypoint triplets for object detection,” arXiv preprint arXiv:1904.08189, 2019.

[26] A. Shrivastava, A. Gupta and R. Girshick, “Training region-based object detectors with online hard example mining,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[27] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, S. Yadav, J. Banerjee, G. Vecsei, A. Kraft, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B. Cook, I. Fernández, W. Chi-Hung, A.-A. Abner, M. Raphael and L. Matias, “imgaug,” 2019. [Online]. Available: https://github.com/aleju/imgaug.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia and L. Kaiser, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015. [Online]. Available: http://tensorflow.org/.

[29] F. Chollet, “Keras,” 2015. [Online]. Available: https://github.com/fchollet/keras.

[30] Z. Xu, W. Yang, A. Meng, N. Lu and H. Huang, “Towards end-to-end license plate detection and recognition: a Large dataset and baseline,” in The European Conference on Computer Vision (ECCV), 2018.

[31] Tzutalin, “LabelImg,” 2015. [Online]. Available: https://github.com/tzutalin/labelImg.

[32] K. Wada, “labelme: image polygonal annotation with python,” 2016. [Online]. Available: https://github.com/wkentaro/labelme.

[33] J. Krause, M. Star, J. Deng and L. Fei-Fei, “3D object representations for fine-grained categorization,” in 4th IEEE Workshop on 3D Representation and Recognition, ICCV, Sydney, Australia, 2013.

[34] X. Wu, D. Sahoo and S. C. Hoi, “Recent advances in deep learning for object detection,” arXiv preprint arXiv:1908.03673, 2019.